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For all the new children

Special thanks go to my brother, Richard, for being a vital
part of the early research. Many thanks to John Martineau.

Note: Some descriptions in this book assume you ‘ 2
are living in the northern hemisphere.

The title page shows the Venus of Laussal, circa 18,000 B.c.
- A clear message survives the aeons, confi irming ancient human
knowledge of the link between the Moon and the human reproductive cycle.

Thirteen notches on a crescent horn link astronomy with human culture.
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Above: Bar Brook, Derbyshire. A typical type-B Slattened stone circle, 4,500
years old and revealing a subtle cosmology and metrology.
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" INTRODUCTION
b

! ',f:f’ B et : - _ In the frenzied attempt to better understand and control the
) o TR e e =i :  material universe, our present culture has strayed sc? far &ox@
. F2 ', ' simplicity and beauty that we are often startled or afraid when it
“es 2] . N reveals itself. o , d with
P oo K The modern system of ideas we call science has d1§pense wit :
IR 'f:-:':: .. © the poetic and broadly fails to see the subtle .cc‘)nnect'mg str_and; o
pEad .”f.:.f : meaning woven into the web of“ life. In adqun, scxense ﬁ today .
o ::: ’ shackled to commerce, also bl%nd ’Eo sucb things, an thus v&;le
;;:.;.:f 1Ob N have “the blind leading thfe blind. As if that wgsx;it ﬁnci):ir:
ik i3 '\ today’s high priests of science also mfo;rinhus wnoct: e
B e ke anymmore, 1ot lome. amswered
g'% T.C N questions are just not to be askefl anymolre, eth t0lies i t};e
Eo == A This little book reveals a poetic cosmo og]}al :rt; e o H
:gaf zE ( cycles of the Sun .and Mo,on., as seen ﬁ-orim t‘h ¢ o prisstly r

- Yo tTe it e lle etie alte eile o o ot ta gt 19,87 Loy id topt oy T be Supfemely rauonai", SO. sump. le and. ¢ egant. 2 P
;on v : tie ;'.'1 ;: :i ::':: 1:':1 x:':: Ried }éﬁ :@u gx . ;‘ intermediary 15 needed to mterpret’ censor, or Intervene.

- - All the mathematics given here may be verified b}f tho.s.e.of
little faith with a simple calculator and the mind of an inquisitive
teenager.

‘ot card numbers eighteen and nineteer—the Moon and the Sun—framed by a
ying card set: 4 suits of 13 cards, representing the 52 weeks in the year. Adding
the munerical vales of each suit (the sum of 1 1o 13) yiclds 91, the munber of
s per season. All four seasons then total 364 days, the joker completing the year
365. An ancient aide memoire for the calendar,

St. Dogmaels, 2001
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'SEARCHING FOR PATTERNS

 finding order in the cosmos

u

The first systematic observations of the Sun and Moon are
shrouded in the mists of prehistory. Scored bones from 40,000
B.C. (below) display lunar number cycles while the famed Venus of
Laussal (title page) links the Moon with the number thirteen.
Repeated cycles such as full moons, eclipses, and planetary
conjunctions revealed a cosmology to ancient astronomers that was
both numerical and geometrical, and which imbued creation with

~order and meaning—*God is a geometer.” The delphic adage “as

above, so below” suggests that cosmic patterns are reflected in
earthly life, becoming a source of revelatory information.

The Great Pyramid (2480 B.C.) epitomizes this approach. Built
to the points of the compass, with passageways aligned to stars, its
base and height fit the “squared circle” of Earth and Moon.

This archaic approach to cosmology is today discarded as
worthless, and has been replaced by modern astronomy. Yet
most people know almost nothing about the Sun, Moon, and
Earth systerh, despite our total dependence on its thythms. This
book will gently put that right, and reinvoke something of the
spirit of the old sciences.
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SOME EARLY SOLUTIONS
from megaliths to the Maya °

kywatching is an ancient art. Stone circles date from 3000 B.C.,
pligned megaliths even earlier. The Egyptians were using accurate
urveying and a precise metrology for both sky and Farth. The
[Great Pyramid enshrined its date of construction through
istronomical alignments to fixed stars. The Sumerians recorded
stral cycles from 2200 B.C. and later defined the 24-hour day and
B60-degree circle. Chaldean and Chinese astronomers knew of
the Saros eclipse cycle (page 28). Various calendars were in use.
From 600 B.c., the Greeks inherited this ancient wisdom.

 solution for the complex motion of the Moon. In the fourth
fentury B.C., the nineteen-year cycle of Sun and Moon was
lescribed by Meton. The Romans gave us our modern calendar
n 45 B.C.
' When the Empire collapsed around A.D. 500 the Arab world
kept the torch of learning burning as Europe sank into the Dark
Ages. Following the Crusades this material returned, seeding the
Renaissance in Europe. Copernicus showed that the Earth orbited
he Sun, while Galileo’s telescope revealed moons orbiting other
lanets. Kepler published the three laws of planetary motion in the
arly seventeenth century, when Newton used data about the
oon to quantify his universal laws of motion and gravity in
687, thereby spawning our modern world. In the next century,
Harrison’s  chronometer greatly improved timekeeping and
havigation.

Eratosthenes measured the size of the Earth and Fudoxus devised -
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THE SUN
the day and the year.

Each day, the Sun appears to rise from an easterly direction,
traces a clockwise arc across the heavens, and then sets toward
the west, disappearing for the dark time we call night. This
cycle repeats perpetually; it is the diurnal rhythm, called, more
simply, a day. .

Today we are taught that what we see is caused by the daily
rotation of a spherical Earth orbiting the Sun. Thereafter, like

- The Fool on the Hill, we “see the Sun going down, while the

eyes in our head see the Earth spinning round.” Each day, the
Sun appears to move about a degree counterclockwise (eastward)
with respect to the fixed stars. Thus the solar day, to which we
set our clocks, exceeds the sidereal (star) day by 3 minutes and 56
seconds. o ‘
The axial tilt of the Earth ( page 9) causes the Sun to.rise and set
‘each day at different positions on the horizon. Only at the
summer and winter solstices (see page 8) is this daily change in the
Sun’s rise and set positions reduced to zero, at ‘their extreme
standstill positions. Subsequent sunrises and sunsets gradually
reverse back along the horizon, the span being dependent on the
latitude of the observer (opposite, bottom). This is the thythm of a
year. , ]
The Earth’s solar orbital period is 365.242199 days. Our
“solar” calendar of 365 days keeps pace by adding regular leap-

year days, one every four years (except once every four hundred
years), and the odd second or two.
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SOLSTICES AND EQUINOXES
the four natural divisions of the year

In between the two solstices, the longest and shortest days in
the year (normally June 21 and December 22), lie the two
equinoctial periods in the spring and the autumn. The
equinoxes (March 21 and September 23) deliver equal lengths of
day and night everywhere on the planet, with the Sun rising
exactly due east and setting exactly due west, on a level horizon.

These equinoctial dates are accompanied by the maximum
rate of change in the length of the day. In temperate latitudes,
this creates the impression that the year is divided into two
distinct halves, a light, warm summer half and a dark, cold
winter half. During the summer half the Sun rises and sets north
of an east-west line; in the winter half always south of it.

The solstices and equinoxes naturally divide the year into four
quarters, defining the four seasons. Each season is 91 days in
length (see page 5 and opposite page 1), caused by the tilt of the
Earth on its own axis (currently 233° with respect to its orbital
plane). This angle may be constructed using a right triangle,
>ase 13 and height 30, or more approximately 3 and 7.

The “cross-quarter” days, halfway between equinoxes and
olstices, are still celebrated as the Celtic festivals of Sambhain
November), Imbolc (February), Beltane (May Day), and Lughnasadh
August). The Earth orbits the Sun at the incredible speed of
6,666 miles per hour and at a distance of 108 solar diameters.
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THE MOON
the goddess of the night

Although apparently lifeless, the Moon greatly affects life on Earth.
The fluctuating monthly rhythm of reflected light, the twice daily
ebb and flow of the tides, and many natural cycles are all essentially
locked into the lunar phases as, umquely, is the reproductive cycle
of humankind. The Moon is‘associated with women and the
number 13, perhaps because the Moon moves 13 degrees a day
and orbits the Earth 13 times in 6ne year. People see a man in the
moon or sometimes a hare, owlv,J swan, or lady.

At an average distance of 240,000 miles, the Moon is our nearest
neighbor. Its radius is 1,080 milés compared with that of the Earth
at 3,960 miles, a ratio of 3:11. However, the Moon is not
spherical, and the Earth’s gravityhlways pulls the larger hemisphere
toward us. The Moon thus ha its “dark side,” which we never
see, but which paradoxically becbmes fully lit each new moon.

The Moon’s orbital plane is Eilted to that of the Earth (below).
Periodically, this enables eclipses to occur and, at higher latitudes,
every 18.618 years, causes wild monthly fluctuations in the altitude
of the Moon, and a maximum angular range of nising and settings.
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THE MOON'S TWO RHYTHMS

. sidereal and synodic months

_ s

-

Observe the Moon for a short while and you will discover one
of its thythms — it moves past the fixed stars quite rapidly, taking
- about an hour to cover the distance of its own diameter. In one
- day, it covers 13 degrees, thereby taking slightly less than 28
days to return to the same stars. This is the sidereal month of
27.322 days, or 27 days, 7 hours, 43 minutes, and 11.51 seconds
(approximately 27 § days).
Three principle rotations are now defined: the day (Sun-Earth),
the sidereal month (Moon-Earth-stars) and the year (Sun-Earth-
~ stars). All three are shown opposite. But there is a fourth rotation,
~ the lunar phases or lunation cycle, the time between full moons,
~ which is truly Sun, Moon, and Earth. Because the lunar phases
are visible all over the Earth, the lunation cycle is the prime lunar
- thythm. It is also called the synodic month or, more simply, the
lunar month. It takes 29.53059 days to complete, or 29 days, 12
hours, 44 minutes, and 2.37 seconds (approximately 294 days).
The Earth completes about a thirteenth of its annual journey '
" around the Sun during one sidereal month, thus the lunar phases ' Onr Orarr Later
- have to “catch up,” as shown in the illustration (opposite, bottom), +1730 dag
this taking an extra 2.21 days over and above the sidereal month. Y MooK " , ,
}  There are 13.368 sidereal months and 12.368 synodic months +253g Q) | : ;
~ in the year. The fractional part is very close to seven-nineteenths. (towmmon)) '
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THE Tick-TOCK OF THE MOON

the lunation cycle or lunar month

The Moon begins her monthly phases acting as consort to the
Sun, appearing as a sliver of silver to his left. This is the new moon,
shaped like a reversed C. Each successive day finds the Moon
belonging more and more to the night sky as the waxing phases
increase the crescent to a quarter, gtbbous, and then full moon,
taking about thirteen days to complete.

Only when full does the Moon “escape” the Sun becoming
entirely nocturnal and reflecting the maximum silvery light down
onto the night landscape. The waning cycle then progressively
delivers the Moon back into the daytime skies as it leads the Sun,
setting later and later in the day until, again after about thirteen
days, it only becomes separate from the Sun just before dawn,
glimpsed as a tiny C-shaped crescent to the Sun’s right.

The Moon then dlsappears for about three days, lost in the light
of the Sun at the new moon. This whole cycle is called the
lunation cycle, lunar, or synodic, month; it is the time between full
(or new) moons, and takes an average 29.53059 days to complete.

An inscribed 5,000-year-old curbstone at Knowth, in the
Boyne valley, Ireland, displays what appears to be a representation
of the lunation cycle. The impressive spiral correctly covers the
three days of new moon, and 15 days later the full moon is
marked *) (” within a.29-based motif. The “serpent” enclosed by

this lunation motif has 30 turns, 29 ; being the average between
the two.
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THE LUNAR DAY
tides of lunar time

Anyone who lives by the sea witnesses the inexorable silent
ipower of the Moon, whose invisible claws draw the tides up and
down the beach twice a day. Tides are not just limited to the
}oceans—the Earth’s atmosphere above our heads and even its
crust beneath our feet rise and fall to this lunar thythm. The
highest spring tides occur two or three days following a new or
full moon. The low-range neap tides occur two days after a
‘waxing or waning quarter moon.

The lunar day is the time between consecutive moonrises, the
Moon rising an average of 52 minutes later each day. There are
exactly two tides each lunar day, each one retarded by an average
of 26 minutes every 12 hours. Tides are synchronized to the
lunar day and therefore to the Moon’s position in the sky. High
tides will always occur at the same two positions of the Moon in
the sky at any given location, these being opposite each other
(one position is always beneath the horizon). A practical tidal
indicator is shown on page 47.

There are 287 lunar days and therefore 57 tides (3 x 19) in each
lunation cycle. In isolation tanks, human bodily rhythms

ventually transfer from the solar to the lunar day.

The Earth and Moon form a huge dumbbell in space, with
their center of rotation located about 1,000 miles beneath the
Earth’s surface (shown as a small checkered circle opposite).
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The Moon’s gravitational pull (M) lifts the oceans on the side of the Earth facing the
Moon. On the opposite side, centrifugal force causes a similar effect (C), because the
center of mass (and so of rotation) of the Earth-Moon system does not lie at the center
of the Earth. The Sun also pulls at the oceans (S), and according to the phase of the
Moon adds or subtracts to and from the height of the tide. “Spring” tides occur near
Sull and new moons (upper), the lesser “neap” tides at the quarter-moons (lower). The
monthly ratio between the heights of spring and neap tides is 8:3.
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- SUN, MOON, AND LANDSCAPE

the moon as mirror of the sun

Each month the Moon more or less copies the entire annual range
of rises and falls undertaken by the Sun in a year.

The Moon rises highest in the sky each month when it is found
near Betelgeuse, in Orion, Its most northerly risings and settings.
occur then. At extreme latitudes (above 60°) a midwinter full
moon may become draumpolar and not set for a few days. The
most southerly risings and settings occur when the Moon is found
near Antares, in Scorpio. At extreme latitudes, for example in
Finland or northern Canada, the full moon may not be visible
during midsummer, especially above the arctic circle, where the
Sun becomes circumpolar.

The full moon is brightest and highest at midwinter, copying
the motion of the midsummer Sun. The midsummer full moon
correspondingly behaves like the midwinter Sun, remaining low
in the dusky sky. Thus the full moon mirrors the Sun at the
opposite point in the calendar, and like a true mirror it fully
reflects the Sun’s light.

This reciprocation mysteriously extends into the numbers, for
1+ Sun=Moon, and 1 + Moon=Sun! 1+ 365.242 =0.0027379,
which in days is 3 minutes and 56 secon'ds, the difference between
sidereal and solar days, while 1 + 27.322 = 0.0366, which in days
is 52 minutes, the difference between lunar and solar days. Itis
- fun to ask an astronomer why. ‘

=
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THE MOON'S NODES
the path of the moon crosses that of the sun

The orbit of the Moon is tilted with respect to that of the Earth
by an angle of 5.14° (see page 10). The effect is that the Moon
travels above the ecliptic (the apparent path of the Sun around the
zodiac) for about half the sidereal month, and travels beneath it for
the other half.

The two places where the Moon crosses the ecliptic each month
are called the lunar nodes, and they always lie opposite each other.
The two smaller illustrations opposite show these crossing points
as observed from the Earth—but in truth, they are invisible!
Eclipses only happen when a full or new moon occurs within
123° or 18 10 respectively, of the nodes; total eclipses when the
alignment is almost exact. These are the eclipse limits for lunar and
solar eclipses.

The axis of the nodes moves backward around the calendar,

taking 18.618 years (6,800 days) to complete a circuit. It moves -

19.618 days per year. To the ancients the nodes were thought of
as the head and tail of a huge celestial dragon that swallowed the
Moon or Sun during an eclipse. The nodal period is still known
as the Draconic year.

The Sun meets a node every 173.3 days (an eclipse season); it
meets a particular node after two of these periods have elapsed,
this both defining and completing the eclipse year of 346.62 days.

Is it not the strangest thing that 346.62 = 18.618 x 18.618?

e =
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ECLIPSES CAN ONLY OCCUR WHEN
A FULL OR NEW MOON HAPPENS WITHIN

THE “ECLIPSE 20NE" (SHADED)
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THE “BREATH” OF THE MOON

major and minor standstills

The monthly extreme northerly and southerly risings and settings
of the Moon gently “breathe” in and out either side of the Sun’s
extreme solsticial positions, taking one nodal period to complete
the “breath.” This greatly alters the possible maximum rising and
setting positions of the Moon -each month with respect to the
solsticial positions of the Sun. There are thus eight limiting
“lunstice” positions, four for risings and four for settings (opposite,
top).

The distance of these extreme positions of the lunstice from the
solstice position is dependent on the latitude of a location. In
southern Britain, they occur more than eight degrees of either side
of the solstice positions (opposite, bottom). These extreme stations
of the Sun and the Moon drew the attention of neolithic
astronomers who made alignments of stones in their honor.

At the ‘major standstill, the Moon describes her wildest monthly
swings of rising and setting, gyrating to her highest- and lowest-
ever paths across the sky, all within one sidereal month. At the
minor standstill, 9.3 years later, the Moon calms down and the
range always lies inside the solsticial positions.

In contrast to the Sun, Moon, and planets, the stars rise and set
at exactly the same place along the horizon for hundreds of years
" irrespective of the season and time of day or night.

22
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ECLIPSES
- cosmic attention seeking

By what almighty coincidence do the disks of Sun and Moon
appear the same size to us earthlings? The Sun is four hundred
times larger than the Moon, yet four hundred times farther away.
The distance of the Moon from the Earth is just over thirty Earth
diameters. Total solar eclipses could never occur if the Moon’s
orbital distance was changed by just one Earth diameter.

Total solar eclipses instill an elemental awe in us, with a sudden
brief reversal from light into darkness, after which “dawn” returns
Sfrom the west, at over 2,000 miles per hour! Lunar eclipses are
gentler and longer and simulate a whole lunation cycle in just a
few hours. '

Solar eclipses occur when the new moon passes directly
between Sun and Earth. They can only be seen during the
daytime, the area of totality tracing a narrow smudge of blackness
across the Earth. Totality never lasts longer than seven minutes at
any one location (opposite, top). During lunar eclipses the full

' moon passes from right to left through the Earth’s shadow, its
reflected light extinguished for several hours (opposite, bottom).
Lunar eclipses are visible to all on the night side of the Earth.

“ As the angle between Sun and node increases, total eclipses

~ decrease and become partial (see page 30). Beyond 18.5° no
eclipse can occur. There can be up to seven eclipses in any one
 year, and solar eclipses are the more common, by the ratio ¥2:1.
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LUNAR ECLIPSES

studiés in light and darkness

A lunar eclipse is a striking phenomenon. The reflected light of
the full moon greatly diminishes the light from the stars, and
during the eclipse a curious and beautiful effect unfolds. As the
full moon enters the Earth’s shadow cone (page 25, bottom), the
Moon’s face darkens and the night sky radically alters its
appearance, becoming brilliantly peppered with many more stars
than were previously visible. This effect is also shown opposite,
where a satistying diagonal symmetry may also be seen.

During the ‘period of totality, the Moon often takes on a
remarkably beautiful coppery color within the starry firma-
ment. Also'stirring is the curve of the Earth’s shadow as it
draws across the lunar orb. It confirms that our planet is about
three times larger than the Moon and spherical in shape.

Before 2500 B.C., Megalithic astronomers in northwestern
Europe appear to have observed a tihy variation in the 5.14° tlt
of the Moon’s orbit ( $° with period 173.3 days) in order to pre-

dict eclipses. Their observatories still exist, mainly in Scotland.
What were our ancestors up to?
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SOLAR ECLIPSES AND THE SAROS i N

W

i the 18-year cycle of eclipses

There are three types of solar eclipse: partial, annular, and total (all
shown opposite).  These are produced by variations in orbital
distances and nodal offset at syzygy, the barely pronounceable
term for a full or new moon (Sun, Moon, and Earth in line).
Any particular eclipse is a member ‘of a family, consecutive
individuals of which display similar characteristics. A famous
family is the Saros cycle, of 18 years and 11 days, 223 lunations or
19 eclipse years. A Saros cycle evolves and decays over about
1,300 years (solar eclipses) and 800 years (lunar eclipses). At any
given time an average of 42 Saros families of solar eclipses, and 27
of lunar eclipses, are evolving, each delivering about 70 and 45
individuals respectively over its lifetime. The Saros was used by
the ancient Chaldean astronomers to accurately predict eclipses.
 The eclipse year (346.62 days) equals 11.738 lunations. Divide
19 eclipse years (the Saros) by 11.738 and you get 1.6186, almost
| phi, the Divine Proportion. Because the eclipse year is 18.618 x
118.618 days, the Saros may be written as 19 x 18.618 x 18.618
days (to 99.99%). Mysteriously, 19 lunations is phi eclipse years!
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- SAROS PATTERNS

a trilateral evolution

All"Saros eclipse families first make an appearance at one of the
poles, gradually evolving into equatorial regions befote eventually
dying out at the other pole (below; bottom). The time difference
between the Saros and 19 eclipse years (0.46 days) causes each new
member to be displaced about half a degree farther west with
respect to the nodes. Thus thé family takes about 36 Saros cycles
(650 years) to reach the node (B) and thereafter departs from it in
the same time, slowly dissipating (below; top—every 7th Saros shown).

The patterns made by these mietamorphosing families of eclipses
(solar or lunar) form threefold motifs on the Earth, due to the fact
that each consecutive Saros périod (223 lunations) is 6,585.321
days in length, the fractional component being about one-third of
a day (or Earth rotation) out of alignment. The midpoints of the
paths of totality for every third member may be joined up to
reveal this threefold pattern. The result is curves called exclegismos
(opposite, dotted for solar and solid for lunar eclipses).

e A




THE DANCE OF THE MOON
Ariadne’s eight-fold web in the sky

The orbital distances of the Earth and Moon undergo periodic
changes. This affects the duration and type of eclipses (see pages
24-31). When the Earth is nearest the Sun, strangely, in chilly
January, it is said to be at perihelion; when farthest from the Sun it
is said to be at aphelion.

Similarly, perigee occurs when the Moon is nearest the Earth,
while apogee finds the Moon farthest from us. The line connecting
these two points in the Moon’s slightly elliptical orbit is called the
line of apsides. This line or axis, the coming and going of the
Moon, itself rotates, completing a cycle every 8.85 years, dividing
the zodiac into eight (opposite) sections. A full moon at perigee
appears 30 percent larger than at apogee.

The line of apsides moves counterclockwise around the zodiac
by 40° 40’ per year, while the nodal axis moves clockwise by 19°
20’ per year (see page 20). The combined motion is thus §0° per
year, a remarkable coincidence causing the nodes and apsides to
rendezvous once more after 6 years (360°). Three of these
meetings take 18 (6+6+6) years, coinciding almost exactly with
the Saros cycle of 18.03 years. This is why eclipses that appear
within consecutive Saros cycles are of the same type and duration.

In nautical almanacs and ephemerides, the position of the Moon
is today predicted years in advance using a formula that contains
over 1,500 separate factors.
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THE 19-YEAR METONIC CYCLE'

DO CALENDA REPEAT CYCLES O
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the marriage of Sun and Moon : | Yernsl Lovrond Exrod Exere
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After 19 years, and within two hours of exactitude, the Sun and - 5 62 Zdaﬁs Colm’ Co,lmdar
. Moon retum to the same places in the sky on the same date. This ‘ , g 3 9 1% das fiy eburg

important repeat cycle is named after Meton, a fourth-century o : Stoneh

B.C. Greek astronomer. It is an astonishingly accurate repeat cycle (- 19 255 2"’”"’ “¥ ]
. among several other contenders (see table opposite; the outer stone S ‘ ,&G: 56521,2,4.5, D= 29.53059 doys r

circle at Avebury once comprised 99 megaliths). |

The first-century B.C. historian Diodorus suggested that the S
Celts knew of the 19-year cycle. We 'need not be surprised at his -
account, for the Celts inherited the culture of the stone-circle -
builders, and many fine circles, particularly in southwestern
Britain, such as Boscawen-un in Cornwall (shown opposite), contain
19 stones. The bluestone horseshoe at Stonehenge comprised 19

slender dressed megaliths, brought from the Preseli Mountains of o |
west Wales, 135 miles as the crow flies. Some weighed over 4
tons! '

There are 12.368 lunations (full moons) in one solar year. The N

lunar year (12 lunations) falls short of the solar year by just under
11 days, which after 19 years accrues to 7 lunations, totaling 12 x
19 plus 7, or 235 lunations. From these numbers, the annual
number of lunations may be found: 235 + 19 equals 12 %, this ,_ {
fraction revealing the underpinning astronomy. '“ ’

Nineteen solar years is 6,939.60 days; 235 lunations is 6,939.69

days. The Metonic cycle may be written as 19 x 18.618 x 19.618
days. ‘
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THE PRECESSIONAL CYCLE
throwing a 26,000 year wobbly

The Earth’s axis will not point to the present pole star forever.
Like a spinning top that has tilted over a little and begun to
wobble, or precess, the axis describes a complete circular rotation
over about 25,920 years, tracing out the northern and southern
circle of pole stars over this period. This is the precessional cycle, also
known as a Great Year (opposite).

Equinoxes occur when the axial tilt of the Earth is at right angles
to the Sun rather than facing toward or away from it (sce page 9).-
This tilt is itself rotating backward very slowly, and the stars
behind the Sun, on any given day of the year, change very slowly
over time. The Age of Pisces commenced in A.D. 1. The Age of
Agquarius, the next Great Month, will commence about A.D. 2160
when, at spring Equinox, the stars behind the Sun are those of the
constellation of Aquarius. Magically, the diameter of the Moon is
2,160 miles, evoking the 2160 year length of the Great Moonth.
Space becomes time!

In a human lifetime, precession is experienced as a single degree
change in the position of the Sun against the fixed stars on a given
date in the year. The precessional effect is caused by orbital
asymmetries of the Sun and Moon.

The Earth’s axial tilt itself varies between 21.5° and 24.8°,
taking 41,000 years to complete a cycle.
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THE SOLAR YEAR
packets of days, leap years, and marking time

The solar year is 365.242 days long, practically 365. People

who haven’t ever thought the matter through will often tell
you there are 365 “and a quarter” days in the year, but one
cannot ever experience a quarter day in isolation. Days come
in packets of one, and 365 of these make up the year, except
that every fourth year an extra day slips in to make it 366.

At high’ latitudes, consecutive sunrises around the equinoxes
-are spaced more than the Sun’s diameter apart (five sunrises shown
opposite, top). However, each year the vernal equinox sunrise will
appear from a slightly different position on the horizon—about
one quarter of a degree (opposite, bottom). During three years of
observation, the Sun appears to rise to the left of the original
alignment until, in the fourth leap year, it rises once more very

close to the original position, the tally for the year becoming 366

days. This accounts for the “quarter day” and is the basis for the
additional intercalary day, February 29." -

Over longer time periods than four years one gets the chance
to obtain the length of the year with even more accuracy, by
observing certain key years when the Sun rises precisely behind
a foresight, stone marker, or, notch in a distant mountain peak,
a perfect repeat solar cycle. -

- The best of these occurs after 33 years, 12,053 days or

sunrises. This is a staggeringly accurate repeat cycle and,
remarkably, seems to have been known since prehistoric times.

]

A B ]




THIRTY-THREE
the number of the solar hero

Thirty-three is a significant calendar number, which threads its
secret through human culture. At a neolithic equinoctial align-
ment in Scotland, a cache of 33 tightly packed quartz pebbles was
discovered by archaeologists. A renowned Irish megalithic site
contains a stone with 33 chevrons picked out, and another has a
snake motif with 33 folds (opposite, bottom). Ancient stories about
the heroic Tuatha de Danaan frequently use the number 33. The
first battle of Mag Tiired was fought by a saviour-hero Lug and
32 other leaders. In the second battle 33 leaders of the Fomore
perish, 32 plus their highest king.

The Christian “highest king,” Jesus, was crucified and re-
surrected at 33 years of age, rising again from behind a large
stone. Islamic and Jewish calendar traditions recognize that it
takes 33 solar years to complete 34 lunar years (of 12 lunations).
A lunar calendar therefore cycles around the seasons, Ramadan
falling 11 days earlier each year. The Masonic Order recognizes

33 degrees of proficiency, while the lonely game of Solitaire
(opposite, top) consists of 33 holes and 32 balls,

These cultural artifacts share a common numerical factor,
apparently derived from long-term observations of the Sun in
prehistory. Pairing this cycle of the Sun with the nodal period of
the Moon we may now “square the circle” by area, thereby
solving the “third greatest problem of antiquity.” Circle and
square have the same area, a marriage of Heaven and Earth.
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DESIGNING A CALENDAR
13 months of 28 days

Timekeeping naturally starts with a calendar, which ideally should
conform both to the solar year of 365 days and the Moon’s phases.
If the calendar year also divided easily into weeks and seasons and
showed the phase of the Moon, the tides, and when to expect
eclipses, we would be well pleased.

Starting from scratch, a calendar designer would soon discover _

that the Moon passes the same star in the sky every 27.3 days
while the Sun takes 365 days. Dividing one by the other and
choosing the nearest whole number, our designer would soon
settle for 13 months of 28 days in a year. This gives a calendar
year of 364 days—a number divisible by 2, 4, 7 and 13—a 52-
week year with four 13-week seasons each of 91 days, a year
with 13 months. All whole numbers and every year a leap year!

Practically, our designer could arrange 28 markers around the
perimeter of a circle and arrange for a “moon-pole” to be moved
counterclockwise once a day. A “sun-pole” would then be
moved in the same direction, only thirteen times more slowly.
This is the simplest way of providing a practical soli-lunar calendar,
only requiring occasional resetting of the “Moon” (place the
moon-pole opposite the sun-pole when full). If the stars were
then represented on the circumference of the circle, the date,
season, state of the tides (see page 16), lunar position, and lunar

phase could be read off at a glance. We would gladly pay our
designer.
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The model above shows a waxing quarter moon on May 12. Tiwenty-eight separate and
equally spaced postholes indicate the Moon’s angular motion per day—about 1 3°. Moving
a “moon-pole” counterclockwise one hole per day emulates what happens in the sky, and the
Moon takes 28 days to make a circuit. A “sun-pole” is now moved one hole every 13 days,
taking 364 days to make the same journey, this being the best approximation to astronom-
ic truth with the fewest holes (97.5 percent for the Moon and 99.66 percent for the Sun).
It is therefore the basis_for the ancient 13 month, 364 day calendar. The improved version
(page 45) also predicts eclipses and is 99.9 percent accurate for the Moon, 99.8 percent for
the Sun.



STONEHENGE

the oldest known calendar |

The model shown on the previous page may be improved to
include eclipse prediction. By doubling the number of postholes
to 56 we exploit the useful coincidence of there being almost
%exacdy 3 cycles of the lunar nodes in twice 28 years. The lunar
nodes are here shown as two diametrically opposed triangular
markers, initally placed near to the date-positions where eclipses
have been recently observed.

The sun-pole now moves 2 holes counterclockwise every 13
days, and the moon-pole 2 holes counterclockwise every day.
The node marker is moved three holes clockwise every year.
When the sun-pole lies within three holes of a “node-pole,” an
eclipse of some sort will take place at each full or new moon,
although it may not be visible at the location. If at each new
moon the moon-pole is made to “skip” past the sun-pole
(omitting this hole), this calendar will run for at least a year before
the moon-pole needs resetting.

The design is shown opposite, hidden within the plan of
Stonehenge, and indicates the date (season), Moon position, and
phase, and predicts full and new moons and eclipses. The Aubrey
circle (3000 B.C.) comprises 56 holes, accurately arranged round
he perimeter of a 283-foot-diameter circle, predating the erection
5 the famous massive inner Sarsen circle. Perhaps posts were
>nce placed in these holes; now they are filled with concrete, but
his oldest known calendar would still work today.
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TIME AND TIDE

making a calendar and tidal predictor

The instruine'nt depicted opposite is a practical calendar and
eclipse and tidal predictor based on the Stonehenge Aubrey circle.
It may be built and used by anyone wishing to become more

aware of the rhythms of the cosmos. It is easy to learn to set up

and maintain this device. You can then know the height of the
tide before setting off for the beach! |

Place the Sun marker at the current date and use an almanac to
determine the Moon’s position, or wait until a new or full moon.
If the Moon is visible, its position can often be set approximately
from its phase. The nodal axis (eclipse zone) moves clockwise
three markers a year (correctly set for January 1, 2001).

The Moen’s position in the sky at high tide needs first to be
known for the chosen location. This varies from country to
country, and to set this position, “dawn” and “dusk” are used to
indicate the local horizon. The quadrant arms are then clamped
at the correct angle onto the rotating central 24-hour clockface.

From now on rotate the central clock (with clamped quadrant
arms) until one of the “High Tide” markers points to the current
Moon position. Simply read off the time of high tide from the
clock time adjacent to the current Sup position. For low tide, point a
“Low Tide” arm and repeat the same procedure. Move the Sun
and Moon every day (as on previous page). Big spring tides follow
full and new moons, small neap tides follow the quarter moons.
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THE SILVER FRACTION
between 12 and 13 full moons

The secret of the calendar is the 11-day mismatch between the
lunar year (12 lunations) and that of the solar year (12.368
lunations). Enoch called this the “over-plus of the Moon,” but
more poetically we may call it the silver Sraction. Remarkably,
three common units of length used by the ancient world, the
Megalithic yard, the Royal cubit, and the Joot, relate through the
astronomy of the lunation and the silver fraction (opposite, top).

The silver fraction is actually 10.875 days in length, which is
0.368 lunations; almost exactly seven-nineteenths as a fraction.
Intriguingly, the diameters of the two main circles of Stonehenge,
the Aubrey circle (283 feet) and the Sarsen circle (104 feet) are in
the ratio 7:19 to each other (below).

Simple geometry can also reveal the annual lunation figure. A
pentagram drawn inside a circle of diameter 13 units has star amms
of length 12.364 (opposite, bottom)! All 5 star arms add up to 61.82,
the number of full moons in 5 years and also 100/phi (to 99.9
percent—see page 28). The famous Celtic Coligny calendar (100

B.C.) is based on a 5-year, 62-lunation cycle (see page 35). Phi in
the sky!
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THE LUNATION TRIANGLE.

Solomon meets Pythagoras

A 5:12 rectangle has a diagonal length of 13. The four station
stones at Stonehenge define one (see page 45), as do the proportions
of Solomon’s Temple at Jerusalem. Twelve plus a thirteenth, as
the redeeming Savior, occurs in many heroic stories, Jesus, King
Arthur, and the Mayan wind god Kukulcan being examples. To
the Pythagoreans the number 5 signified completeness or marriage,
formed as the first male number, 3, becomes wedded to the first
female number, 2. - '

The true number of months in the year falls between 12 and 13,
and in order to define a true soli-lunar calendar this figure, 12.368,
must be determined. The lunation triangle is defined as a 5:12:13
right triangle, the second Pythagorean triangle, with the “5” side
divided as 3:2. A new hypotenuse to this point measures 12.369.
The Moon, 13, thereby becomes married to the Sun, 12, where
the female, 2, joins to the male, 3. The sacred marriage of Sun and
Moon, made in Heaven, is witnessed on Earth, and occurs at the
musical fifth, the most harmonious interval (3:2).  Musical
allegories abound (opposite, bottom), and Solomon’s throne is wisely
placed at the 3:2 point in the Temple. ,

St John’s Gospel ends with a fishy story. Jesus reappears for the
third time since his resurrection and instructs his fishless disciples
“cast your nets on the right side,” who. then catch 153 fish.

The square of the annual lunation rate is 153—12.368—to 99.99
percent. . o
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o
SUN, MOON, AND EARTH |

the revealed structure of the system ‘ L

The diagram opposite frames a curious symmetry. Both the
eclipse year (346.62 days) and thirteen full moons (383.89 days) ), S5 g
are almost exactly equally spaced, at 18.6 days, on either side of 7\ ¢ QT B

prewm——18.¢ b
. . I G iaiiisun e e
the solar year of 365.242 days. Because the eclipse year is the A =il s 2

square of the lunar node period in days (18.618%), we are now

-able to write that the solar year is (18.618 x 18.618) + 18.618.
This is also 18.618 x 19.618. The number 18 added to 1/phi, phi,
or phi?, now delivers the following extraordinary formulas to
99.99 percent:

18.618 x 18.618 = 346.62 days (the eclipse year)
18.618 x 19.618 = 365.242 days (the solar year)
18.618 x 20.618 = 383.89 days (13 lunations) L ! !

The astronomy reveals the actual geometry and numerical

structure of the Sun, Moon, Earth system (opposite). Imagine a a
- solar eclipse at (1). The Sun then moves to meet up with the same
node after an eclipse year (2), 346.62 days later. Passing the
original eclipse point (1) at the end of one year, the Sun and
Moon then meet for the thirteenth lunation at (3).

An isosceles triangle, drawn to fit the angles generated by the
astronomy, also then defines the solar eclipse limits, and has the
remarkable property of replicating the numbers shown above as
ratios. In addition, the shorter side has a length 12.368, the annual
lunation rate. One marvels at this revelation of cosmic order!

-

52




""" "

A STONE-AGE COMPUTER

neolithic cosmology revealed

In remote places in Britain survive many examples of curiously
flattened stone circles, constructed some 4,500 years ago and
named type-A and type-B by Professor Thom, the discoverer of
the Megalithic yard (2.72 feet, 32.64 inches, 0.83 m).

Both type-A and type-B rings invoke a Christian symbol, the
vesica piscis, the almond shape between two overlapping circles,
here applied 2,500 years before Jesus. Stones are commonly placed
intelligently to the geometry (opposite). More astonishingly, this
design invokes the same triangle we have just witnessed under-
pinning the structure of the Sun, Moon, Earth system!

The right triangle has side ratios 1:3 :¥10. A rope taken from
the center, O, to point P, and thence to B and A has a length 3
+v10+2, which is 8.16227, exactly one quarter of the Megalithic
yard, in inches. If length PB is considered to represent a lunation
period, then the intersection of the vesica circle cuts it at 0.368 of
its length (at X). If PB is now considered to represent the solar
year, then PO represents the eclipse year, this ratio being either
V10:3 or 19.618:18.618. The ratios foot: Rpyal cubit: Megalithic
yard may also be “read” from this exquisite device.

This most beautiful analogue of the Sun, Moon, Earth system
stores their key constants and the ancient metrology all within

itself, as ratios. An awesome glimpse of an ancient wisdom is now
finally revealed. '
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PEBBLES ON THE SHORES OF TIME

multidimensional solutions to local cosmology
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TIME

Solar Year: 365.242199 days '

Lunar Year: 354.367 days

Lunation period: 29.53059 days

Eclipse Year: 346.62 days

Lunation rate: 12.36826623/year

Saros eclipse cycle: 18.03 years or 223
lunations or 6585.322 days

Lunar node cycle (Draconic year): 18.618
years or 6800.0 days

Metonic cycle: 19 years or 235 lunations
or 6939.602 days

LENGT

Orne foot: one degree of arc along the
equator + 365,242

Megalithic yard: 2.72 feet (+/- 0.003 fect).

Eanhs equatorial radius: 3963.4 miles

Polar radivs: 3950.0 miles

Lunar orbit inclination to Earth-Sun plane:
5°8’ 30"

Solar angular diameter (mean). 0° 32°

Lunar angular diameter (mean): 0° 31° 30”

Lunation period: Time between consecutive
new moons for full moons).

Ediptic: The Sun’s apparent path through the
zodiacal belt of stars, seen from Earth.

Solar tropical year: Time between consecutive
sping equinoxes,

Precessional (Great) year: Time for the zodiac
1o rotate (backwiard) around the calendar,

Syzygy: Sum, Moon, and Earth in a line,

S

Sidereal lunar month: 27.322 days -

Sun-spot cycle: 11 years

Sidereal day: 23 hours, 56 minutes, and
4 seconds

- Solar tropical day (clock time): 24 hours

Lunar day (average): 24 hours, 52
minutes, and 4.31 seconds

Precessional cycle: approx 25,820 years

Tidal spacing (average): 12 hours, 26
minutes, and 2.15 seconds

HS

Lunar radius: 1,080 miles
Lunar distance: 222,000-253,000 miles
meanr: 240,000 miles

-~ Sun’s radius: 432,000 miles

Sun’s distance (mean): 93,009,000 miles

ANGLES & RATIOS

Earth’s axial tilt: 23° 27

Earth to Moon density ratio: 1.6 : 1
Earth to Moon mass ratio: 81:1
Eccentricity of lunar orbit: 1/18

SOME DEFINITIONS

Solar/Lunar. day: Time between consecutive
south transits of the Sun/Moon.

Lunar year: 12 lunations,

Sidereal lunar period: Time for the Moon to
return to the same longitude (or star).

Lunar nodes: Tio opposite points where the
Moon’s path crosseg the ecliptic.

Eclipse year: Time betureen consecutive
conjunctions of the Sun and north node.

| IRRATIONALS
e=2718282 ... V2 = 1.414214 . ..

 phi(g) = 1.618034 . ..
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This book is dedicated to Professor Keith Critchlow,
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|[NTRODUCTION

Imagine a spherc. ‘

It is unity’s perfect symbol. Each pointon its surface is identical
to every other, equidistant from the unique point at its center.

Establishing a single point on the sphere allows others to be
defined in relation to it. The simplest and most obvious re-
Jationship is with the point directly opposite, found by extending
a line through the sphere’s center to the other side. Add a third
point and space Al three as far from each other as possible tO
define an equilateral triangle. The three points lie on a. circle
with a radius equal to the sphere’s and sharing its center, an
example of the largest circles possible on a'sphere, known as great
circles. Point, line, and triangle occupy 2ero, one, and two
dimensions respectively. It takes a minimum of four points to
define an uncurved three-dimensional form. '

This small book charts the unfolding of number in three- .

dimensional space through the most fundamental forms derived
from the sphere. A cOrnerstone of mathematical and artistic in-
quiry since antiquity, after countless generations these beautiful
forms continue to intrigue and inspire.

Cairo, Summer 2001
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THE PLATONIC SOLIDS

beautiful forms unfold from unity

Imagine you are on a desert island; there are sticks and sheets of
bark. If you start experimenting with making three-dimensional
structures you may well discover five “perfect” shapes. In each
case they look the same from any vertex (corner point), their faces
are all made of the same regular shape, and every edge is identical.
Their vertices are the most symmetrical distributions of four. six,
eight, twelve, and twenty points on a sphere (below).

These forms are examples of polyhedra, literally “many seats,”
and, as the earliest surviving description of them as o group is in
Plato’s Timaeus, they are often called the Platonic solids. Plato
3 lived from 427 B.C. to 347 B.C., but there is evidence that they
were discovered much earlier (see page 20).

The cube, with its six square faces, is well known. The other
; four have names deriving from their numbers of faces. Three of
- ~ the solids have faces of equilateral triangles: the fetrahedron is made
» from four, the octahedron eight, and the icosahedron twenty. The
dodecahedron has twelve regular pentagonal faces. The following
ten pages will describe these striking three-dimensional forms in
greater detail.

l"
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dodecahedron icosahedron




THE TETRAHEDRON
4 faces, 6 edges, 4 vertices

The tetrahedron is composed of four equilateral triangles, with
three meeting at every vertex. Its vertices can also be defined by
the centers of four touching spheres (opposite, bottom right). Plato
associated its form with the element of fire because of the
penetrating acuteness of its edges and vertices, and because it is
the simplest and most fundamental of the regular solids. The
Greeks also knew the tetrahedron as puramis, from which the
word pyramid is derived. Curiously the Greek word for fire is
pur.

The tetrahedron has three 2-fold axes of symmetry, passing
through the midpoints of its edges, and four 3-fold axes, each
passing through one vertex and the opposite face center (helow).
Any polyhedron with these rotation axes has fetrahedral symmetry.

Each Platonic solid is contained by its circumsphere, which Just
touches every vertex. The solids also define two more spheres:
their midsphere, which passes through the midpoint of every edge,
and their insphere, which is contained by the solid, perfectly
touching the center of every face. For the tetrahedron the
inradis is one-third of the drcumradius (opposite, bortom lefr).
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THE OCTAHEDRON
8 faces, 12 edges, 6 vertices

The octahedron is made of
meeting at every vertex. Plato considered the octahedron an
intermediary between the tetrahedron, or fire, and the
icosnhedron, or water and thus ascribed it to the element of air.
The octahedron has six 2-fold axes passing through opposite
edges. four 3-fold axes passing through its face centers, and three
4-fold axes passing through opposite vertices (below).  Any poly-
hedron combining these rotation axes is said to have octahedral
symmefry. '

Greek writings attribute the discovery of the octahedron and
icosahedron to Theaetetus of Athens (417 B.C.~369 B.C.). Book
XTI of Euclid’s Elements (see page 14) isbthought to be based on
Theaetetus” work on the regular solids.

The octahedron’s circumradius s bigger than its inradius by a
factor of V3 (see page 55). The same relationship occurs between
the circumradius and mradius of the cube, and between the
circumradius and midradius of the tetrahedron.

The tetrahedron, the octahedron and the cube are 3] found n
the mineral kingdom. Mineral diamonds often form octahedra.
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THE [COSAHEDRON
20 faces, 30 edges, 12 vertices

The icosahedron is composed of twenty equilateral triangles, five
to a vertex. [t has fifteen 2-fold axes, twenty 3-fold axes, and
twelve 5-fold axes (below), known as icosahedral syminetry. When

the tetrahedron, octahedron, and icosahedron are made of

identical triangles, the icosahedron is the largest. ‘This led Placo
to associate the icosahedron with water, the densest and least
penetrating of the three fluid elements—fire, air, and water.

The angle where two faces of a polyhedron meet at an cdge is
known as a dihedral angle. The icosahedron is the Platonic solid
svith the largest dihedral angles.

[f.you join the two ends of an icosahedron’s edge to the center
of the solid an isosceles triangle is defined. This triangle is the
same as those that make up the faces of the Great Pyramid at Giza
in Egypt.

Arranging twelve equal spheres to define an icosahedron leaves
space at the center for another sphere Jjust over nine-tenths as
wide as the others (opposite, lower right).

AR
N\
v

edge on : 2-fold face on : 3-fold from vertex : 5-fold

el
\\

TN ——




THE CUBE
6 faces, 12 edges, 8 vertices

The cube has octahedral symmetry (below). Plato assigned it to
the element of earth due to the stability of its square bases.
Aligned to our experience of space it faces forward, backward,
right, left, up, and down, corresponding to the six directions
north, south, east, west, zenith, and nadir. Six is the first petfect
number, with factors adding up to itself (1 +2+3 = ¢).

Add the cube’s twelve edges, the twelve face diagonals, and the
four interior diagonals to find a total of twenty-eight straight
paths joining the cube’s eight vertices to each other. Twenty-
eight is the second perfect number (1+2+4+7+ 14 =28).

Islam’s annual pilgrimage is to the Kaaba, literally cube, in
Mecca. The sanctuary of the Temple of Solomon was a cube, as
is the crystalline New Jerusalem in Saint John’s revelation. In
430 B.C. the oracle at Delphi instructed the Athenians to double
the volume of the cubic altar of Apollo while maintaining its
shape.  “Doubling the cube,” as the problem became known,
ultimately proved impossible using Euclidean geometry alone.
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THE DODECAHEDRON

12 faces, 30 edges, 20 vertices

The beautiful dodecahedron has twelve regular pentagonal faces,

three of which meet at every vertex. Its symmetry is icosahedral

(bclow).  Like the tetrahedron, or pyramid, and the cube, the

dodecahedron was known to the early Pythagoreans and was
! commonly referred to as the sphere of twelve pentagons. Having
detailed the other four solids and ascribed them to the elements,
Plato’s Timacus says enigmatically, “There remained a fitth
construction which God used for embroidering the constellations
on the whole heaven.”

A dodecahedron sitting on a horizontal surface has vertices .
lving in four horizontal planes that cut the dodecahedron into
three parts. Surprisingly, the middle part is equal in volume to
the others, so each is one-third of the totall Also, when set in the
same sphere, the surface areas of the icosahedron and dodeca-
hedron are in the same ratio as their volumes.

i

“Fool's Gold,” or iron pyrite, forms crystals much like the
dodecahedron, but don’t be fooled, their pentagonal faces are not
regular and their symmetry is tetrahedral.
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A SHORT PROOF
are there really only five?

A regular polygon has equal sides and angles. A regular poly-
hedron has equal regular polygon faces and identical vertices. The
five Platonic solids are the only convex regular polyhedra.

At least three polygons are needed to make a solid angle. Using
equilateral triangles this is possible with three (A), four (B), and
five (C) around a point. With six the result lies flat (D). Three
squares make a solid angle (E), but with four (F) a limit similar
to six triangles is reached. Three regular pentagons form a solid
angle (G), but there is no room, even lying flat, for four or more.
Three regular hexagons meeting at a point lie flat (H), and higher
polygons cannot meet with three around a point, so a final limit
is reached.  Since only five solid angles made of identical regular
polygons are possible, there are at most five possible convex
regular polyhedra. Incredibly, all five regular solid angles repeat

to form the regular polyhedra. This proof is given by Euclid of -

Alexandria (c. 325 B.C.—265 B.C.) in Book XIII of his Elements.
The angle left as a gap when a polyhedron’s vertex is folded flat

is its angle deficiency. René Descartes (1596-1650) discovered that

the sum of a convex polyhedron’s angle deficiencies always
equals 720°, or two full turns. Later, in the eighteenth century,
Leonhard Euler (1707-1783) noticed another peculiar fact: In
every convex polyhedron the number of faces minus the number
of edges plus the number of vertices equals two.
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ALL THINGS IN PAIRS
Platonic solids two by two

What happens if we join the face centers of the Platonic solids?
Starting with a tetrahedron, we discover another, inverted,
tetrahedron. The faces of a cube produce an octahedron, and an
octahedron creates a cube. The icosahedron and dodecahedron
likewise produce each other. Two polyhedra whose faces and
vertices correspond perfectly are known as each other’s duals.
The tetrahedron is self-dual. Dual polyhedra have the same num-
ber of edges and the same symmetries.

The illustrations opposite are stereogram pairs. Hold the book
at arms length and place a finger vertically, midway to the page.
Focus on the finger and then bring the central blurred image into
focus. The image should jump into three dimensions.

Dual pairs of Platonic solids can be joined with their edges
touching at their midpoints to give the compound polyhedra
shown below. Everything in creation has its counterpart or
opposite, and the dual relationships of the Platonic solids are a
beautiful example of this principle.

16
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AROUND THE GLOBE

in elegant ways

Plato’s cosmology constructs the elemental solids from two types
of right-triangular atoms. The first atom is half an equilateral
triangle, six of which then compound to produce larger
equilateral triangles; these go on to form . the tetrahedron,
octahedron, and icosahedron. The second triangular atom is a
diagonally halved square, which appears in fours, making squares
that then form cubes.

The Platonic solids have planes of symmetry dividing them into
mirror-image halves. The tetmhedrop has six, the octahedron
and cube have nine, and the icosahedron and dodecahedron have
fifteen. When the tetrahedron, octahedron, and icosahedron are
constructed from Plato’s triangular atoms, paths are defined that
make their mirror planes explicit. The cube, however, needs
twice as many triangular divisions as Plato gave it (top row) to
delineate all its mirror planes (middle row).

Projecting the subdivided Platonic solids onto their
circumspheres produces three spherical systems of symmetry.
Each spherical system is defined by a characteristic spherical
triangle with one right angle and one angle of one-third of a half
turn. Their third angles are respectively one-third of a half turn
(top row), one-quarter of a half turn (middle vow), and one-fifth of
a half curn (bottom row). This sequence of 1, 1 and 1 elegantly

30 4
mverts the Pythagorean whole number triple 3, 4, 5.
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ROUND AND ROUND

lesser circles

Any navigator will tell you that the shortest distance between two
points on a sphere’s surface is always an arc of a great circde. When
a polyhedron’s edges are projected onto its circumsphere the
result is a set of great circle arcs known as a radial projection. The
left-hand column opposite shows the radial projections of the
Platonic solids with their great circles shown as dotted lines.

A spherical circle smaller than a great circle is called a lesser circle.
Tracing a circle around all the faces of the Platonic solids set in
their circumspheres generates the patterns of lesser circles, shown
in the middle column. Book XIV of Euclid’s Elements proves
that when set in the same sphere, the lesser circles around the
dodecahedron’s faces (fourth row) are equal to the lesser circles
around the icosahedron’s faces (fifth row). The same is true of the
cube (second row) and the octahedron (third row) as a pair.

Shrink the lesser circles in the middle column until they just
touch each other to define the five spherical curiosities in the
right-hand column. Many neolithic carved stone spheres have
been found in Scotland with the same patterns as the first four of
these arrangements. The dodecahedral carvings of twelve circles
on a sphere, some 4,000 years old, are the earliest known ex-
amples of manmade designs with icosahedral symmetry.

Large lesser circle models can be made from circles of willow,
or cheap hula-hoops, lashed together with wire, string, or tape.

20
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THE GorpEn Ratio
- and some intriguing Juxtapositions
T \

Dividing a line so that the shorter section is to the longer as the
longer section is to the whole line defines the golden ratio (below).
It is an irrationa) number, inexpressible as a simple fraction (see
page 55). Its value is one plus the square root of five, divided by
two’~approximate]y 1.618. It is represented by the Greek letter
d (phi) or sometimes by © (fan). ¢ has intimate connections witl
unity; ¢ times jtself ) is equal to ¢ plus one 2618 . . ), and
one divided by ¢ equals ¢ minyg one (0.618 . ). Jeis innately
related to five-fold symmetry; each successjve pair of heavy lines
in the bentagram below is in the golden ratio,

A golden rectangle has sides in the golden ratjo. If a square js
removed from ope side, the remaining rectangle is another
golden rectangle. Thjs Process can continue indefinitely and
establishes 5 golden spiral (beloy right). Remarkably, 4p Icosa-
hedron’s twelve vertices are defined by three berpendicular gold-
en rectangles (opposite, top). The dodecahedron i even richer,
Twelve of its twenty vertices are defined by three perpendicular
e rectangles, and the remaining eight vertices are found by
adding a cube of edge length b (opposite, bottom).
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POLYHEDRA WITHIN POLYHEDRA
and so proceed ad infinitum

The Platonic solids fit together in remarkable and fascinating
ways. Page 54 shows many of those relationships. The upper
Stereogram pair opposite shows a dodecahedron with edge length
one. Nested inside it is 3 cube, edge length ¢, and a tetrahedron,

edge length V2 (see page 55) times the cube’s. The tetrahedron
occupies one-third of the cube’s volume,

the golden ratio.

Imagine these two sets of nestings combined to give all five
Platonic solids in one elegant arrangement.  Since the outer do-
decahedron defines 4 larger icosahedron by their dual rela-
tionship, and the mnner icosahedron likewise defines a smaller
dodecahedron, the nestings can be continued outward and
inward to infinity, '

The tetrahedron, octahedron, and icosahedron, made entirely
from equilatera] triangles, are known as tonvex deltahedra, after the

Greek letter A (delta). The five other possible convex deltahedra
are shown in the bottom rOW opposite.
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- COMPOUND POLYHEDRA
a stretch of the imagination

The interrelationships on the previous page generate particularly
beautiful compound polyhedra. Fix the position of an icosa-
hedron, and octahedra can be placed around it in five different
ways, giving the compound of five octahedra (top leff). Similarly
the cube within the dodecahedron, placed five different ways,
generates the compound of five cubes (top right). The tetra-
“hedron can be placed in the cube two different ways to give the
compound of two tetrahedra shown on page 16. Replace each
of the five cubes in the dodecahedron with two tetrahedra to give
the compound of ten tetrahedra (middle leff). Remove five of the
tetrahedra from the compound of ten, to leave the compound of
five tetrahedra (middle right). This occurs in two versions, right-
handed, or dextro, and left-handed, or laevo; the two versions
cannot be superimposed and are described as each other’s
enantiomorphs. Polyhedra or compounds with- this property of
“handedness” are referred to as chiral. _
Returning to the cube and dodecahedron, and this time fixing
the cube, there are two ways to place the dodecahedron afound
it. The result of both ways used simultaneously is the compound
of two dodecahedra (bottom leff). In the same way the octahedron
and icosahedron pair gives the compound of two icosahedra
(bottom righty. Many other extraordinary compound polyhedra
are possible; for example, Bakos’s compound of four cubes is
shown on the first page of this book.
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THE KEPLER POLYHEDRA
the stellated and great stellated dodecahedron

The sides of some polygons can be extended until they meet
again; for example, the regular pentagon extends to form a five
pointed star, or pentagram (below). This process is known as
stellation. Johannes Kepler (1571-1630) proposed its application
to polyhedra, observing the two possibilities of stellation by

extending edges, and stellation by extending face planes.

Applying the first of these (below) to the dodecahedron and
icosahedron he discovered the two polyhedra illustrated opposite
and named them the larger and smaller icosahedral hedgehogs.
Their modern names, the stellated dodecahedron (opposite, fop)
and the great stellated dodecahedron (opposite, bottom), reveal that
these polyhedra are also two of the face stellations of the do-
decahedron. Each is made of twelve pentagram faces, one with

five, the other with three to every vertex. They have icosahedral -

symmetry.
Although its five sides intersect each other, the pentagram has
equal edges and equal angles at its vertices and so can be
considered a nonconvex regular polygon. Likewise, these
polyhedra can be regarded as nonconvex regular polyhedra.

29
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- THE POINSOT POLYHEDRA
the great dodecahedron and the great icosahedron

Louis Poinsot (1777-1859) investigated polyhedra indepen-
dently of Kepler. He rediscovered Kepler’s two icosahedral
hedgehogs and also discovered the two polyhedra shown here:
the great dodecahedron (opposite, top) and the great icosahedron
(opposite, bottom). Both of these polyhedra have five faces to a
vertex, intersecting each other to give pentagram vertex figures.
The great dodecahedron has twelve pentagonal faces and is the
third stellation of the dodecahedron. The great icosahedron has
twenty trangular faces ‘and is one of an incredible fifty-nine
possible stellations of the icosahedron, which also include the
compounds of five octahedra and of five and ten tetrahedra.

A nonconvex regular polyhedron must have vertices arranged
like one of the Platonic solids. Joining a polyhedron’s vertices to
form new types of polygon within it is known as faceting. The

possibilities of faceting the Platonic solids produce the

compounds of two and ten tetrahedra, the compound of five
cubes, the two Poinsot polyhedra (below leff) and the two Kepler
star polyhedra (below righf). The four Kepler-Poinsot polyhedra
are therefore the only nonconvex regular polyhedra.

30




THE ARCHIMEDEAN SOLIDS

thirteen semiregular polyhedra

The thirteen Archimedean solids (opposite) are the subject of
" much of the rest of this book. Also known as the semireeular
polyhedra, they have regular faces of more than one type, and
identical vertices. They all fit perfectly within a sphere, with
tetrahedral, octahedral, or icosahedral symmetry. Although their
. earliest attribution is to Archimedes (c. 287 B.C.—212 B.C).
Kepler seems to have been the first person since antiquity to
describe the whole set of thirteen in his Flannonices Mindi. e
further noted the two infinite sets of regular prisms and antiprisims
(below), which also have identical vertices and regular faces.
Turn one octagonal cap of the rhombicuboctahedron by an
cighth of a turn to obtain the pseudorhombicuboctahedron
(belowy. Tts vertices, while surrounded by the same regular
polygons, are of nwo types relative to the polyhedron as a whole.
There are fifty~three semiregular nonconvex polyhedra, one
example being the dodecadodecahedron (below). Together with
the Platonic and Archimedean solids, and the Kepler-Poinsot
polyhedra, they form the set of seventy-five uniform polyhedra.

) L. pscudo
heptagonal prisnt  heptagonal antiprism  hombicuboctahedron  dodecadodecahedron

rhiombicosidodecaliedron

truncated tetrahedron

_
B A

cuboctahedron

great rhombicosidodecahedron

33
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FIVE TRUNCATIONS
off with their corners!

Truncate the Platonic solids to produce the five equal-edged
Archimedean polyhedra shown here. These truncated solids are
the perfect demonstration of the Platonic solids’ vertex figures:
triangular for the tetrahedron, cube, and dodecahedron; square :
] for the octahedron; and pentagonal for the icosahedron. Each : E
Archimedean. solid has one circumsphere and one midsphere. ‘
They have an insphere for each type of face, the larger faces
having the smaller inspheres touching their centers. Each
truncated solid therefore*defines four concentric spheres.

The five truncated solids can each sit neatly inside both their
original Platonic solid and that solid’s dual. For example, the
truncated cube can rest its octagonal faces within a cube or its
triangular faces within an octahedron. ‘

The truncated octahedron is the only Archimedean solid that
can fill space with identical copies of itself, leaving no gaps. It |
also conceals a less obvious secret. Joining the ends of one of its
edges to its center produces a central angle that is the same as the
acute angle in the famous Pythagorean 3 : 4 : 5 triangle, beloved
by ancient Egyptian masons for defining a right angle.

34
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THE CUBOCTAHEDRON
14 faces, 24 edges, 12 vertices

The cuboctahedron combines the six square faces of the cube
with the eight triangular faces of the octahedron. It has octahedral
symmetry. Joining the edge midpoints of cither the cube or the
octahedron traces out a cuboctahedron (shotn below as a stercognam
pair). According to Heron of Alexandria (10-75), Archimedes

ascribed the cuboctahedron to Plato.

Quasircgular polyhedra such as the cuboctahedron are made of

two types of regular polygon, cach type being surrounded by
polygons of the other type. The identical edges, in addition to
defining the faces themselves, also define equatorial polygons.
For example, the cuboctahedron’s edges define four regular
hexagons.  The radial projections of quasiregular polyhedra
consist entirely of complete great circles (opposite, bottomn leff).
The maximum number of identical spheres that can fit around

a central sphere of equal size is twelve. Arranged symmetrically

so that their centers define the vertices of a cuboctahedron, they
cach touch four neighbors (opposite, bottom right).

36
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A CUNNING TWIST

and a structural wonder

Picture a cuboctahedron made of rigid struts joined at Hexible
vertices. This structure was named “the Jitterbug” by R,
Buckminster Fuller (1 895—1983),‘ and is shown opposite with the
rigid triangular faces filled in for clarity. The Jitterbug can be
slowly collapsed in on itself In two ways so that the square
“holes” become distorted. When the distance between the
closing corners equals the edge length of the triangles, an
1cosahedron is defined. Continue collapsing the structure and it
beconies an octahedron, If the top triangle is then given a twist
the structure flattens to form four triangles that close up to give
the tetrahedron. .

Geodesic domes are another of Buckminster Fuller’s structural
discoveries. These are parts of geodesic spheres, which are
formed by subdividing the faces of a triangular polyhedron,
usually the icosahedron, into ‘smaller triangles, and then
projecting the new vertices outward to the same distance from
the center as the original ones (below). A distant relative of the
geodesic sphere is the popular ‘R enaissance polyhedron of
seventy-two sides known as Campanus’s sphere (below righi).

38
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THE ICOSIDODECAHEDRON
32 faces, 60 edges, 30 vertices

The icosidodecahedron combines the twelve pentagonal faces
of the dodecahedron with the twenty triangular faces of the
icosahedron. Joining the edge midpoints of either the dodec-
ahedron or the icosahedron traces out the quasiregular icosi-
dodecahedron (both shown below as a stereograns pain). Tts edges
form six equatorial decagons, giving a radial projection of six
great circles (opposite, bottom leff).

The earliest known depiction of the icosidodecahedron is by
Leonardo Da Vinci (1452-1519) and appears in Fra Luca
Pacioli’s (1445-1517) De Divina Proportionc. Appropriately this
work’s main theme is the golden rado, which is perfectly
embodied by the ratio of the icosidodecahedron’s edge to its
circumradius. _

Defining the icosidodecahedron with thirty equal spheres
leaves space for a large central sphere that is V5 (see page 55) times
as large as the others (opposite, bottom right).

40




FOUR ExPLOSIONS
expanding from the center

Exploding the faces of the cube or the octahedron outward until
they are separated by an edge length (below) defines the rhom-
bicuboctahedron (opposite, top lef). The same process applied to
the dodecahedron or icosahedron gives the rhombicosi-
dodecahedron (opposite, top right). The octagonal faces of the
truncated cube, or the hexagonal faces of the truncated
octahedron, explode to give the great rhombicuboctahedron
(opposite, bottom leff). The decagonal faces of the truncated
dodecahedron, or the hexagonal faces of the truncated
icosahedron, explode to give the great rhombicosidodecahedron
(opposite, bottom right).

Kepler called the great rhombicuboctahcdron a truncated cuboc-
tahedron, and the great  rhombicosidodecahedron a truncated
icosidodecahedron. Truncating these polyhedra, however, does not
leave square faces, but V2 and ¢ rectangles.

These four polyhedra have face planes in common with either
the cube, octahedron, and rhombic dodecahedron (see page 47),
or the icosahedron, dodecahedron, and rhombic triaconta-
hedron (see page 47), hence the prefix “rhombi-" in their names.

42

2o

e

=

43




TURNING
the snub cube and the snub dodecahedron

The name “snub cube” is a loose translation of Kepler’s name
cubus simus, literally “the squashed cube.” Both the snub cube

dextro versions on the right.

and the snub dodecahedron are chiral, occurring in dextro and
laevo versions. Both versions are illustrated opposite with the

The snub cube has octahedral

symmetry, and the snub dodecahedron has icosahedral symmetry.

Neither has any mirror planes.

Of the Platonic and Archimedean

solids the snub dodecahedron is closest to the sphere.

The rhombicuboctahedron (see page 43) can be used to make a
structure similar to the jitterbug (sce page 39). Applying a twist to
this new structure produces the snub cube (below). Twist one
way to make the dextro version and the other to make the laevo.
The corresponding relationship exists between the rhombicosi-
dodecahedron and the snub dodecahedron.

The five Platonic solids have been truncated, combined,

. exploded, and twisted into the thirteen Archimedean solids.
)y Three-dimensional space is revealing its order, complexity, and
subtlety. What other wonders await?
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THE ARCHIMEDEAN DUALS
everything has its opposite

The duals of the Archimedean solids were first described as a
group by Eugéne Catalan (1814-1894) and are positioned
opposite to correspond with their partners on page 33. To create
| the dual of an Archimedean solid, extend perpendicular lines
. from its edge midpoints, tangential to the solid’s midsphere.
These lines are the dual’s edges, the points where they first
ntersect each other are its vertices. Archimedean solids have one
type of vertex and different types of faces, their duals therefore
have one type of face bue different types of vertices.,

The two quasiregular Archimedean solids, the cuboctahedron
and the icosidodecahedro_n, both have rhombic duals that were
discovered by Kepler. The Platonic dual pair compounds (pages
16, 36, and 40) define the face diagonals of these rhombic
polyhedra, which are in the ratios V2 for the rhombic
dodecahedron and ¢ for the rhombic triacontahedron. Kepler
noticed that bees terminate their hexagonal honeycomb cells
with three such V2 rhombs. He also described the three dual
i pairs involving quasiregular solids (below), where the cube is seen
¢ as a thombic solid, and the octahedron as a quasiregular solid.
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tetrakishexahedron

trapezoidal icositetrahedron

trapezoidal hexecontahedron

rhombic dodecahedron

disdyakisdodecahedron pentagonal icositetrahedron

disdyakistriacontahedron pentagonal hexecontaliedron
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MORE EXPLOSIONS

and unseen dimensions

Exploding the rhombic dodecahedron, or its dual the

cuboctahedron, results in an equal edged convex polyhedron of

fifty faces (opposite, top right). The exploded rhombjc triaconta-
hedron, or exploded icosidodecahedron, has one hundred and
twenty-two faces (opposite, bottom right). :
Ludwig Schlifi (1814-1895) proved that there.are six regular
four-dimensional polytopes (generalizations of polyhedra): the
5~cell made of tetrahedra; the 8-cell, or lesseract, made of cubes;
the 16-cell made of tetrahedra; the 24-cell made of octahedra; the
120-cell made of dodecahedra; and the 600-cell made of
‘ tetrahedra. The rhombic dodecahedron is a three-dimensional
shadow of the four-dimensional tesseract analogous to the
hexagon as a two-dimensional shadow of the cube. In a cube two
squares meet at every edge. In a tesseract three squares meet at
every edge. Squares through the same edge define three cubes
) (shaded below with an alternative tesseract projection). Schlifi also
pproved that in five or more dimensions the only regular polytopes
‘are the simplex, or generalized tetrahedron, the hypercube, or
.generalized cube, and the orthoplex, or generalized octahedron.

i
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FLAT-PACKED POLYHEDRA

Ita polyhedron is “undone” along some of its edges and folded flar, the
result is known as its per, The earliest known examples of polyhedra

OAVAVAY

tetrahedron frlmcn.‘cd tetrahedron

trimcated octahedron

cube truncated cube

i icosahedron truncated icosahedron

e @

dodecahedron

snub cube snub dodecahedron




ARCHIMEDEAN SYMMETRIES

' The diagrams below show the rotation symmetries of the Archimedean
- solids and the two rhombic Archimedean duals,

‘truncated tetrahedron

DO BB

truncated octahedron -

truncated icosahedron

590 OO0

I

truncated cube truncated dodecahedron
RN, P74
5 ED &5 &8
|
3 ‘A’ Q& Navn
‘ cuboctahedron icosidodecahedron
Ve rn N TN
O (F 3 @)
NG E aue By
~ e Wt &
‘ rhombicuboctahedron rhombicosidodecahedron -
/“\ f—"’; ABTR
& & &3
' b=8) & &
great rhombicuboctahedron great rhombicosidodecahedron
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Y & K
snub cube snub dodecahedron
- ' . PR AN AN
s ! b / , T4
rhombic dodecahedron rhombic triacontahedron

THREE-DIMENSIONAL TESSELLATIONS

Of the Platonic solids only the cube can fill space with copies of itself
and leave no gaps. The only other purely “Platonic” space filling
combines tetrahedra and octahedra. One Archimedean solid, the
truncated octahedron, and one Archimedean dual, the rhombic
dodecahedron, are also space-filling polyhedra.

CAOOTON
SNONG 22
S'ONONONON

@)
S

truncated octahedra rhombic dodecahedra
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EXPANSIONS AND FORMULAS

A recurring theme in the metric properties of the Platonic solids is the occurrence of t

irrational numbers phi (),

and the square roots V2, V3, and Vs. They are surprising

clegant when expressed as (infinitcly) continued fractions:

i

=1+l V5 = 2+4—1

Their decimal expansions to twelve places, together with that of 7t are

¢ = 1.618033988750

V2 = 1414213562373

V5 = 2.236067977500

V3 = 1732050807569
7 = 3.141592653590

The table below gives volumes and surface areas for a sphere radius r, and Placonic solids,

edge length s,

other in the Platonic solids.

Sphere
Tetrahedron

Octahedron

Crbe
Icosahedron

Dodecahedron

Folume

Surface 4rea
47,2
V3s2
2V352

0 .\'2

WR5+10V35) 52
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Also included are the proportional pachways joining each vertex o every

Nianber of Pailupays, Length
n/a
6 edges, ¢

12 edges, s

3 axial diagonals, V24

12 edges, s

12 face diagonals (inscribed tetrahedra), V2
4 axial diagonals, ¥ 3 5

30 edges, s

30 face diagonals, s

6 axial diagonals, ¥ (¢7+1) ¢

30 edges, s

60 face diagonals (inscribed cubes), ¢

60 interior diagonals (inscr. tetrahedra), V2 ¢
30 interior diagonals, ¢

10 axial diagonals, V3 ¢
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DATA

:

TABLE

Tetrahedron
Chube
Octahedron
Dodecaliedron
Ieosahedron

Stellated Dodecahedron
Great Dodecahedron

Great Stellated Dodecaliedyon
Great Kosahedron

Chuhoctahedron
leosidodecahedron
Trumcated Tetrahedron
Trincated Cube
Truncated Octahedron
‘Truncated Dodecahedron
Truncated Icosahedron
Rhombicuboctahedron

Great Rhombicuboctahedron

Rhombicosidodecahedron

Great Rhombicosidodecahedron

Snub Cube

Smib Dodecaliedron

Symmetry®

Icos.

Icos.

Oct.-»

Icos.-»

* Symunctries: Tetrahedral: 4 x Iofold axes, 3 x 2:fold, 6 mirtor planes.
leosahedsal: 65 5-fold axes, 10 x 3-fold, 15 x 2-fold, 15 mimor Planes,
" The sunb solids have ne mirror planes,

Vertices

24

60

60

24

48

60

120

24

60

Ldges

6
12
12
30
30

30
30
30
30

36
36
91}
90

48

120

180

60

150

Faces

(total)

4
6
8
12

20

12
12

12
20

62

62

38

92

Faces

(types)

4 miangles

6 squares

8 triangles
12 pentagons
20 wiangles

12 pentagrams
12 pentagons
12 pentagrams
20 triangles

8 triangles
O squares
20 wriangles
12 pentagons
4 triangles
+ hexagons
8 triangles
6 octagons
6 squarcs
8 hexagons
20 triangles
12 decagons
12 pentagons
20 hexagons
8 iangles
18 squares
12 squares
8 hexagons
6 octagons
20 triangles
30 squares
12 pentagons
30 squares
20 hexagons
12 decagons
32 triangles
6 squares
80 triangles
12 pentagons

Oxtahedral: 3 x 4-fold axes, 4 x 3-fald, 6 x 2-fold, 9 intirrar planes.

Inradius™
Circumradius

0.3333333333
.5773502692
1.5773502692
0.7946544723
0.7946544723

0F721 35955
0.4472135955

. 0.1875924741

0.1875924741

0.8164965809
0.7071067812
0.9341723590
085006508084
1.8703882798
0.5222329679
(.9458621650
0.6785983445
0.8944271910
1.7745966692
(1.9809163757
0.8385051474
0.9392336205
(L.9149583817
0.9108680249
(.8628562093
0.9523198087
0.9021230715
08259425910
0.9659953695
(1.9485360199
(1.9245941063
(L9825506436
1.9647979663
0.9049441875
09029870683
08503402074
09634723304
(LY188614921

Midradins
Circumradius

0.5773502692
0.8164965809
0.7071067812
.9341723590
-0.8506508084

W.525731 1121
(1.8506508084
0.3568220898
0.5257311121

0.8660254038
0.9510565163
09045340337
0.9596829823
0.9486832981
0.9857219193
0.9794320855
1.9339488311

0.9764509762
09746077624
0.9913166895

0.9281913780

(1,97273285006

Lot polyhednon’s onter she innading is measured 1o the varous face-apers, the i i
™ In Arciimedean solids the larger diedral angles are found between smaller pairs of, faces.
“*** The aentral augle is the angle formed at the eenter of @ polyhedron by joining the ends of an edge to that comer.

_Edge Length ™ Dihedral Central
Circumradius Angles = Angle ™
1.6329931619 70°31'44" 109°28'16"
1.1547005384 90°00'00" 70°31'44"
1.4142135624 109°28'16" 90°00'00"
0.7136441795 116°33'54" 41°48'37"
1.0514622242 138711723" 63°26'06"
1.7013016167 116°33'54" 116°33'54"
1.0514622242 63°26'06" 63726'06"
1.8683447179 63°26'06" 138°11723"
1.7013016167 41°48'37" 116°33'54"
1.0000000000 125°15'52" 60°00'00"
0.6180339887 142°37°21" 36°00'00"
0.8528028654 70°31'44" 50°28'44"
109°28'16"
0.5621692754 90°00°00" 32°39'00"
125°15'52"
0.6324555320 109°28'16" 36°52'12"
125°15'52"
0.3367628118 116°33'54" 19°23'15"
142737210
0.4035482123 138°11°23" 23°16'53"
1423721 )
0.7148134887 135°00'00" 41°52'55" \#\
144°44'08" ]
0.4314788105 125°15'52" 24°35'04" !
13500100
144°44'08" -
0.4478379596 148°16'57" 25°52'43"
153°56'33"
159°05'41"
0.2629921751 142°3721" 15°06'44"
148°16'57"
159°05'41" ]
0.7442063312 142°59'00" 43 4127" ‘
15371405
0.463RF688U6 152°55'48" 2674917
164°1031"
idradine to the edge midpoins, and the i dies 1o vertives,
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FURTHER READING

If you have enjoyed this Wooden Book, others in the series that may be of
interest include Sacred Geometry by Miranda Lundy and Useful Mathematical
& Physical Formule by Matthew Watkins.

For those looking for more things polyhedral, Keith Critchlow’s Order In
Space (Thames & Hudson) and Peter R. Cromwell’s Polyhedra (Cambridge)
are both highly recommended. H. S. M. Coxeter’s Regular Polytopes (Dover)
15 the classic twentieth-century mathematical text on the subject, and
Norman Johnson’s forthcoming Uniforin Polytopes (Cambridge) promises to
become an indispensable addition to the literature. Those with access to a
manuscript library are well advised to seck out Wenzeljmnnitzcr's Perspectiva
Comporum Regularium (1568). .

For those wishing to make models, Magnus J. Wenninger's Polyhedron
Models (Cambridge), Dual Models (Cambridge), and Spherical Models (Dover)
cover their respective areas very thoroughly. Shapes, Space and Symmetry by
Alan Ho@Dover) is 3159 good. A range of Fj&‘_EEEﬁPEI:m:E?_IXEC_C_lEL
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